Вирусы для своего воспроизведения используют энергию света

Вирусы, что это такое? Виды, устройство, формы, размножение

Вирусы для своего воспроизведения используют энергию света

Вирусы — это микроскопические патогены, заражающие клетки живых организмов для самовоспроизводства.

Они состоят из одного вида нуклеиновой кислоты (или ДНК или РНК, но не обе вместе), которая защищена оболочкой, содержащей белки, липиды, углеводы или их комбинацию.

Размер типичного вируса варьируется от 15 до 350 нм, поэтому его можно увидеть только с помощью электронного микроскопа.

В 1892 году русский ученый Д.И. Ивановский впервые доказал существование ранее неизвестного типа возбудителя болезней, это был вирус мозаичной болезни табака.

А в 1898 году Фридрих Лоффлер и Пол Фрош нашли доказательства того, что причиной ящура у домашнего скота была инфекционная частица, которая меньше, чем любая бактерия.

Это были первые шаги к изучению природы вирусов, генетических образований, которые лежат где-то в серой зоне между живыми и неживыми состояниями материи. На текущий момент описано около 6 тыс. вирусов, но их существует несколько миллионов.

Строение вирусов

Вне клеток-хозяев вирусы существуют в виде белковой оболочки (капсида), иногда заключенного в белково-липидную мембрану. Капсид обволакивает собой либо ДНК, либо РНК, которая кодирует элементы вируса. Находясь в такой форме вне клетки, вирус метаболически инертен и называется вирионом.

Простая структура, отсутствие органелл и собственного метаболизма позволяет некоторым вирусам кристаллизоваться, т.е. они могут вести себя подобно химическим веществам.

С появлением электронных микроскопов было установлено, что их кристаллы состоят из тесно прижатых друг к другу нескольких сотен миллиардов частиц.

В одном кристалле вируса полиомиелита столько частиц, что ими можно заразить не по одному разу всех жителей Земли.

Формы вирусов

Вирусы встречаются в трех основных формах. Они бывают:

  1. Сферическими (кубическими или полигидральными). Вирусы герпеса, типулы, полиомы и т.д.
  2. Спиральными (цилиндрическими или стержнеобразными). Вирусы табачной мозаики, гриппа, эпидемического паротита и др.
  3. Сложными. Например, бактериофаги.

Сфера, спираль и сложная ассиметричная формы вирусов (ПостНаука/)

Проникновение вирусов в клетку-хозяина

Капсид в основном защищает нуклеиновую кислоту от действия клеточного нуклеазного фермента.

Но некоторые белки капсида способствуют связыванию вируса с поверхностью клеток-хозяев, и работают, как ключики, вставляемые в нужные замочки.

Другие поверхностные белки действуют как ферменты, они растворяют поверхностный слой клетки-хозяина и таким образом помогают проникновению нуклеиновой кислоты вируса в клетку-хозяина.

Вирусные популяции используют механизмы и метаболизм клетки-хозяина, чтобы произвести множество своих копий, которые собираются в клетке, пока не «выжмут из нее все соки», а затем выходят из погибшей клетки. Это наиболее частый сценарий, но не единственный.

Жизненный цикл вирусов сильно отличается у разных видов, но существует шесть основных этапов жизненного цикла вирусов:

  1. Прикрепление
  2. Проникновение
  3. Сброс капсида («раздевание»)
  4. Репликация
  5. Сборка
  6. Выход из клетки

Присоединение к клетке-хозяину представляет собой специфическое связывание между вирусными капсидными белками и рецепторами на клеточной поверхности. Эта специфика определяет хозяина вируса.

Проникновение следует за прикреплением: вирионы проникают в клетку-хозяина через рецептор-опосредованный эндоцитоз или слияние мембран. Это часто называют вирусной записью.

Проникновение вирусов в клетку достигается за счет:

  • Образования пор
  • Слияния мембран
  • Ретракции пилуса
  • Выброса
  • Проницаемости
  • Механизмов эндоцитоза

Мембраны растительных и грибковых клеток отличаются от мембран животных клеток. Растения имеют жесткую клеточную стенку из целлюлозы, а грибы – из хитина, поэтому большинство вирусов могут проникать внутрь этих клеток только после травмы («пробивания») клеточной стенки.

Бактерии, как и растения, имеют прочные клеточные стенки, которые вирус должен разрушить, чтобы заразить клетку.

Учитывая, что бактериальные клеточные стенки намного тоньше стенок растительных клеток из-за их гораздо меньшего размера, некоторые вирусы выработали механизмы ввода своего генома в бактериальную клетку через клеточную стенку, оставляя вирусный капсид снаружи. У прокариот происходит слияние мембран, образование пор через прокалывающее устройство.

Размножение вирусов

После того, как вирусный геном освобождается от капсида, начинается его транскрипция или трансляция. Именно эта стадия вирусной репликации сильно различается между ДНК- и РНК-вирусами и вирусами с противоположной полярностью нуклеиновой кислоты. Этот процесс завершается синтезом новых вирусных белков и генома (точных копий внедрённых).

Механизм репликации зависит от вирусного генома.

  • ДНК-вирусы обычно используют белки и ферменты клетки-хозяина для получения дополнительной ДНК, она транскрибируется в РНК-мессенджер (мРНК), которая затем используется для управления синтезом белка.
  • РНК-вирусы обычно используют ядро ​​РНК в качестве матрицы для синтеза вирусной геномной РНК и мРНК. Вирусная мРНК направляет клетку-хозяина на синтез вирусных ферментов и капсидных белков и сборку новых вирионов. Конечно, есть исключения из этого шаблона. Если клетка-хозяин не обеспечивает ферменты, необходимые для репликации вируса, вирусные гены предоставляют информацию для прямого синтеза отсутствующих белков.

Чтобы преобразовать РНК в ДНК, вирусы должны содержать гены, которые кодируют вирус-специфический фермент обратной транскриптазы. Она транскрибирует матрицу РНК в ДНК. Обратная транскрипция никогда не происходит в неинфицированных клетках. Необходимый фермент, обратная транскриптаза, происходит только от экспрессии вирусных генов в инфицированных клетках.

После того, как процесс репликации «поставлен на поток», готовые копии вируса отпочковываются и заражают другие клетки-хозяина. Другим вариантом выхода вируса из клетки является лизис. В этом случае клетка разрывается, высвобождая копии вируса.

Вироиды

Вироиды – это наименьшие из известных патогенов, они представляют собой голые круглые одноцепочечные молекулы РНК, которые не кодируют белок капсида, а реплицируются автономно при попадании в клетку растения-хозяина. Первый вироид был открыт в 1971 году, и он вызывает болезнь картофеля («веретенообразность» клубней). С тех пор было обнаружено 29 других вироидов длиной от 120 до 475 нуклеотидов.

Вироиды заражают только растения. Одни вызывают экономически важные заболевания сельскохозяйственных культур, в то время как другие являются доброкачественными. Двумя примерами экономически важных вироидов являются кокосный cadang-cadang (он вызывает массовую гибель кокосовых пальм) и вироид рубцовой кожицы яблок, который безнадежно портит товарный вид яблок.

30 известных вироидов были классифицированы в две семьи.

  • Члены семейства Pospiviroidae, названные по имени вироида клубневого веретена картофеля, имеют палочковидную вторичную структуру с небольшими одноцепочечными областями, имеет центральную консервативную область, и реплицируются в ядре клетки.
  • Avsunviroidae, названный в честь вироида авокадо, имеет как палочковидную, так и разветвленную области, но не имеет центральной консервативной области и реплицируется в хлоропластах растительной клетки.

В отличие от вирусов, которые являются паразитами механизма трансляции хозяина, вироиды являются паразитами клеточных транскрипционных белков.

Бактериофаги

Бактериофаги являются вирусами, которые заражают и используют для своего размножения бактерии. Эти вирусы были независимо обнаружены Фредериком У. Твортом в Великобритании (1915 г.) и Феликсом д’Эрелем во Франции (1917 г.). D’Hérelle ввел термин бактериофаг, означающий «пожиратель бактерий», чтобы описать бактерицидную способность открытого им инфекционного агента.

Характеристика бактериофагов

Существуют тысячи разновидностей фагов, каждый из которых может заразить только один тип или несколько близких типов бактерий или архей. Фаги классифицируются по ряду семейств вирусов; например:

  • Inoviridae
  • Microviridae
  • Rudiviridae
  • Tectiviridae и т.д.

Как и все вирусы, фаги являются простыми организмами, которые состоят из ядра генетического материала (нуклеиновой кислоты), окруженного капсидом белка. Нуклеиновая кислота может представлять собой либо ДНК, либо РНК, и может быть двухцепочечной или одноцепочечной.

Существует три основных структурных формы фага:

  1. Икосаэдрическая (20-сторонняя) головка с хвостом
  2. Икосаэдрическая головка без хвоста
  3. Нитевидная форма

Вирулентные и умеренные фаги

Во время заражения фаг прикрепляется к бактерии и вставляет в нее свой генетический материал. После этого фаг обычно следует одному из двух жизненных циклов: литическому (вирулентному) или лизогенному (умеренному).

Литические, или вирулентные, фаги захватывают механизм клетки, чтобы скопировать компоненты фага. Затем они разрушают или лизируют клетку, высвобождая новые частицы фага.

Лизогенные, или умеренные, фаги включают свою нуклеиновую кислоту в хромосому клетки-хозяина и реплицируются с ней как единое целое, не разрушая клетку. При определенных условиях лизогенные фаги могут индуцироваться в соответствии с литическим циклом.

Существуют и другие жизненные циклы, в т.ч. псевдолизогенез и хроническая инфекция.

При псевдолизогении бактериофаг проникает в клетку, но не использует механизм репликации клеток и не интегрируется в геном хозяина, просто как бы прячется внутри бактерии, не нанося ей никакого вреда.

Псевдолизогенез возникает, когда клетка-хозяин сталкивается с неблагоприятными условиями роста и, по-видимому, играет важную роль в выживании фага, обеспечивая сохранение генома фага до тех пор, пока условия роста хозяина снова не станут благоприятными.

При хронической инфекции новые фаговые частицы образуются непрерывно и длительно, но без явного уничтожения клеток.

Фаговая терапия

Вскоре после открытия фаги начали использовать для лечения бактериальных заболеваний человека, таких как бубонная чума и холера. Но фаговая терапия тогда не была успешной, и после открытия антибиотиков в 1940-х годах она была практически заброшена. Однако с появлением устойчивых к антибиотикам бактерий терапевтическому потенциалу фагов уделяется все больше внимания.

Наше время с антибиотиками заканчивается. В 2016 году женщина в штате Невада умерла от бактериальной инфекции, вызванной Klebsiella pneumoniae, которая была устойчивой ко всем известным антибиотикам. Бактерии, устойчивые к колистину, антибиотику последней инстанции, были обнаружены на свинофермах в Китае. В настоящее время бактерии приспосабливаются к антибиотикам быстрее, чем когда-либо.

Тем временем ученым требуется десять или более лет, чтобы разработать новый антибиотик и получить разрешение на его применение. В итоге мы проигрываем бактериям в этой «гонке вооружений».

Человечеству срочно нужен альтернативный метод борьбы с бактериальными инфекциями.

Одним из самых перспективных методов уничтожения бактерий является использование бактериофагов: вирусов, которые заражают и убивают бактерии.

Источник: https://sci-news.ru/2019/viruses/

Ультрафиолетовые светодиоды для борьбы с вирусами

Вирусы для своего воспроизведения используют энергию света

  • 16 апреля 2020 г. в 10:16
  • 8006

Пандемия коронавируса COVID-19 уже успела оказать большое влияние на светотехническую отрасль. Светильники для кафе, ресторанов и мест проведения массовых мероприятий больше не в центре внимания специалистов. Основным направлением, куда прилагаются усилия ученых и инженеров, стали светодиоды, дающие излучение в ультрафиолетовом диапазоне.

Ультрафиолетовым (УФ) называют излучение с длиной волны от 10 до 400 нм, т. е. короче, чем у видимого света. Вместе УФ, видимое и инфракрасное, обозначаются единым понятием «световое излучение». Иногда говорят о свете в широком понимании этого слова. По конструкции источники УФ-излучения аналогичны источникам видимого света.

Спектр УФ-излучения делится на четыре диапазона. UVA — от 315 до 400 нм, UVB — от 280 до 315 нм, UVC — от 100 до 280 нм и экстремальный от 10 до 100 нм. Лучи UVA проходят через многие современные марки оконных стекол.

Практическое применение — шоу-бизнес (свечение одежды в темноте), косметология (затвердевание лака, а также геля для наращивания ногтей), криминалистика (выявление поддельных купюр) и т. п. Диапазон UVB отвечает за загар; лампы, излучающие в нем, используются в соляриях. Излучение данного диапазона не проходит через любые марки оконных стекол.

В обычных условиях лучи UVC не достигают поверхности Земли, задерживаясь в атмосфере. Частично излучение этого спектра можно встретить на вершинах гор.

Кроме этого, периодически над теми или иными участками земного шара образуются так называемые «озоновые дыры», пропускающие UVC. Бесконтрольное облучение UVC-лучами в больших дозах очень вредно для здоровья человека. Но, как это часто бывает, яд и лекарство представляют собой одно и то же, разница только в дозировке.

Излучение в диапазоне от 205 до 315 нм способно уничтожать бактерии и вирусы. Принцип борьбы заключается в разрушении ДНК болезнетворных организмов. Причем, как показали научные исследования, наибольшей эффективности такая борьба достигает при длине волны 265 нм.

На момент написания статьи в научном мире сложилось мнение, что ДНК нового вируса также разрушается ультрафиолетом. Каких-либо особенностей, отличающих в этом плане COVID-19 от других вирусов, пока не установлено.

Применение кварцевых и бактерицидных ламп для обеззараживания воздуха и поверхностей помещений в России регламентируется «Методическими указаниями», утвержденными Минздравом 28 февраля 1995 г. Прямого упоминания УФ-светодиодов в них нет.

Тем не менее некоторые типы УФ-светодиодов могут соответствовать данному в «Методических указаниях» определению: «Электрические источники излучения, спектр которых содержит излучение диапазона длин волн 205—315 нм, предназначенные для целей обеззараживания, называют бактерицидными лампами». Теоретически это должно способствовать «легализации» УФ-светодиодов до принятия новой нормативной базы.

Лампы, используемые сейчас для борьбы с инфекциями, делятся на кварцевые и бактерицидные. Принцип их работы основан на плазменном разряде в парах ртути.

Кварцевая лампа — это ртутная лампа высокого давления. По конструкции она, как правило, аналогична лампам ДРЛ, до сих пор кое-где используемым для уличного освещения, но не имеет люминофора. Но бывают и кварцевые лампы, по форме похожие на люминесцентные. Колба выполнена из кварцевого стекла, откуда и название лампы.

В спектре кварцевой лампы присутствует составляющая с длиной волны 254 нм, которая разрушает ДНК бактерий и вирусов. Также есть излучение с длиной волны 185 нм, под действием которого кислород воздуха преобразуется в озон. В строго дозированных количествах озон также способен уничтожать болезнетворные микроорганизмы.

Но именно выработка озона стала причиной, почему сейчас кварцевые лампы применяются только для проведения медицинских процедур в индивидуальном порядке. Желательно под присмотром персонала с медицинским образованием.

Всемирная организация здравоохранения не рекомендует использовать кварцевые лампы для борьбы с коронавирусом из-за негативного воздействия составляющей в 185 нм на кожу человека.

Бактерицидная лампа по конструкции аналогична люминесцентной лампе, но без люминофора, а колба выполнена из специального сорта стекла, пропускающего излучение с длиной волны 254 нм и задерживающего составляющую 185 нм.

С такими лампами могут работать люди, не имеющие медицинского образования, например, сотрудники клининговых компаний. Именно бактерицидные лампы сейчас широко используются для обеззараживания. Как правило, обеззараживание производится в помещении, где в данный момент нет людей.

Но при соблюдении определенных условий и установке лампы специалистом возможно ограниченное применение бактерицидных ламп и в помещениях с людьми.

Конструкция пускорегулирующей аппаратуры для кварцевых и бактерицидных ламп полностью идентична конструкции таких устройств для ламп ДРЛ и люминесцентных соответственно.

Кварцевые лампы подходят для медицинских процедур, но для массовых мероприятий по обеззараживанию их использование не рекомендуется

Преимущества светодиодов

Замена разрядных ламп светодиодами в установках для обеззараживания может дать следующие основные преимущества:

  • благодаря малым размерам светодиодов можно более точно сфокусировать излучение на обеззараживаемый объект;
  • регулировка мощности излучения в широких пределах (диммирование);
  • возможность создания источника с наиболее эффективной длиной волны 265 нм; высокая механическая прочность, значительное уменьшение массы установки;
  • отсутствие ртути.

Проще говоря, используя светодиоды, мы получим компактное обеззараживающее устройство, которое будет иметь меньше ограничений в использовании по сравнению с применяемыми сейчас установками на основе бактерицидных ламп. В частности, возможность точной фокусировки, а также регулировка мощности в широких пределах позволят использовать обеззараживатель в помещениях, где постоянно находятся люди, без ущерба для их здоровья.

Обеззараживание медицинского инструмента с помощью бактерицидной лампы

Техническая реализация

Чем короче длина волны, тем сложнее производство светодиодов. Серийное производство UVC-светодиодов для широкого применения началось только во второй половине 2010-х годов. Изначально их разрабатывали в рамках международного проекта по обеспечению качественной питьевой водой беднейшие страны Африки.

Компактные установки на светодиодах, обеззараживающие воду, могут питаться от аккумулятора, индивидуального ветряка или напрямую от небольшой солнечной батареи, когда бактерицидным лампам требуется питание от сети или инвертора.

Теперь же эти разработки пытаются использовать для обеззараживания воздуха и поверхностей в помещениях.

Для UVC-светодиодов используются полупроводники с увеличенной шириной запрещенной зоны. На момент написания статьи наиболее распространенным материалом для таких светодиодов был нитрид галлия с добавлением алюминия (AlGaN). Например, светодиоды на его основе выпускает компания California Eastern Lab (CEL).

Преимуществом AlGaN является возможность использования для производства источников света уже хорошо отработанных технологических процессов. Но этому материалу свойственны и недостатки. Для него характерен высокий уровень дефектов кристаллической решетки, что снижает КПД.

Другая проблема — длина волны излучения 275 нм, что не совпадает с оптимальным значением.

Компания Seoul Viosys первой в мире провела испытания своих UVC-светодиодов на вирусе COVID-19. Согласно пресс-релизу компании, опубликованному 3 марта 2020 г., вирус был уничтожен с эффективностью 90 %.

В качестве примера приведем CL7003C2 — наиболее мощный UVC-светодиод из производимых CEL. Рабочий ток составляет 600 мА при прямом напряжении 5,2 В. При этом мощность излучения составляет 30 мВт. Т. е. в итоге получаем КПД порядка 1 %. В то же время у кварцевой лампы КПД составляет 10-15 %, а у бактерицидной — 35-50 %. При этом оптовая цена на светодиод составляет $109 за штуку.

О выпуске своего UVC-светодиода с мощностью излучения 30 мВт объявила и компания Everlight.

Данные по рабочему току и прямому напряжению пока не опубликованы, но косвенно, по длине волны 280 нм можно предположить, что используется та же AlGaN технология.

Также светодиоды на 275 нм выпускает компания Seoul Viosys, являющаяся дочерней структурой Seoul Semiconductor. Мощность излучения составляет до 50 мВт, КПД — около 1 %.

УФ-светодиод Everlight с защитным кварцевым стеклом

Более перспективным в качестве материала для UVС является нитрид алюминия (AlN). У него реже, чем в AlGaN, встречаются дефекты кристаллической структуры, что обуславливает более высокий КПД.

Это направление развивает компания Klaran. Ее светодиод KL265-50U-SM-WD дает излучение мощностью 60 мВт со средней длиной волны 265 нм. КПД достигает 2 %.

О ценах на данные светодиоды пока не сообщается.

Выводы

УФ-светодиоды диапазона UVC пока что уступают разрядным лампам по КПД и стоят значительно дороже. Они могут дать выигрыш при создании обеззараживающих установок, умещающихся в кармане.

Но будет ли эффективен обеззараживатель, облучающий, скажем, только стол, на котором вы будете обедать в ресторане, а не все помещение? На этот вопрос смогут дать ответ только вирусологи, а никак не специалисты по светотехнике.

Остается лишь надеяться, что всеобщий интерес к теме борьбы с вирусами вместе с запретом на использование ртути привлечет большие инвестиции в развитие УФ- светодиодов, сделав их конкурентоспособными относительно бактерицидных ламп по стоимости и КПД.

Тогда светодиоды заменят разрядные лампы в крупногабаритных обеззараживающих установках, эффективность работы которых уже доказана.

Источник: Алексей Васильев, журнал «Электротехнический рынок» №2 2020

Источник: https://www.elec.ru/articles/ultrafioletovye-svetodiody-dlya-borby-s-virusami/

Вирусы – неклеточные формы жизни. Меры профилактики распространения вирусных заболеваний

Вирусы для своего воспроизведения используют энергию света

К неклеточным жизненным формам относят вирусы, вироиды, прионы. Они не проявляют признаки жизни, находясь вне клеток хозяина. Это мельчайшие частицы, которые проходят через бактериальные фильтры и во внешней среде выглядят как кристаллы. Их существование ограничивается двумя стадиями:

  • внеклеточной или покоящейся;
  • внутриклеточной или воспроизводящей.

Вирусы не живут в окружающей среде, они просто пережидают неблагоприятные условия. Жизнь замирает до момента, пока они не попадут в клетку хозяина. Это внутриклеточные паразиты, которые действуют на генетическом уровне: воспроизводят себе подобных и это их единственное проявление жизни. Известно около 1000 «мелких паразитов», которых классифицируют по химическому составу и строению.

К сведению:Вирусы – это материал для изучения строения и функций генетического аппарата. С их помощью рассматриваются механизмы реализации наследственной информации, используют в качестве инструмента в генной инженерии. Они необходимы для биологической борьбы с возбудителями ряда заболеваний растений, грибов животных, человека.

Характеристика вирусов

  1. Если вирус находится клетки-хозяина, то он существует в форме нуклеиновой кислоты.
  2. Если вирус вне клетки хозяина, то он существует в форме вириона.

Компоненты вириона:

  • Сердцевина— генетический материал (или ДНК, или РНК);
  • Капсид — белклвая оболочка, окружающая нуклеиновую кислоту;
  • Суперкапсид — дополнительные оболочки.

Подразделяются на собственно вирусы, которые паразитируют в клетках эукариот, и бактериофаги, «нападающие» на клетки бактерий.

Вирусы отличаются простым строением, которое ограничено ДНК (РНК) и белковой оболочкой или капсидом. У более сложных разновидностей в наличии липопротеиновая мембрана.

Бактериофаг состоит из головки – это белковая оболочка с наследственным материалом и отростка, необходимого для контакта с клеткой хозяина.

Схема «Классификация вирусов»

 Вирус способен внедрится в клетку при непосредственном контакте с ней. Поскольку он лишен органоидов движения, то пути заражения:

  • воздушно-капельный (грипп);
  •  с пищей через органы пищеварения (гепатиты);
  • через кровь (ВИЧ);
  • благодаря переносчику (энцефалит).

После контакта с мембраной клетки-хозяина, вирус растворяет участок клеточной оболочки и вводит в цитоплазму свою ДНК (РНК). Встраиваясь в хозяйский геном, он «заставляет» клетку производить вирусный наследственный материал, на который наращивается белковая оболочка. 

Вирус не только истощает клетку-хозяина, но и вызывает в ней повреждения, перестройки и приводит к гибели. При этом происходит массовый выход вирусных частиц.

Если организм отличается крепкой иммунной системой, то события разворачиваются иначе. Происходит синтез противовирусных белков (интерферонов, иммуноглобулинов). Вирус прекращает размножение, его деятельность прерывается, а остатки выводятся из клетки организма.

На заметку: Большинство вирусов действуют избирательно. Для воспроизведения себе подобных им подходит специально предназначенная для них клетка. Так, вирусы гепатита заселяют клетки печени, а вирусы гриппа поселяются на слизистых оболочках верхних дыхательных путей.

Меры профилактики распространения вирусных заболеваний

Вирусы поражают живые организмы: от их вмешательства страдают растения, животные, человек. Сотни миллионов людей погубила «испанка», черная оспа, ВИЧ. После перенесенных заболеваний организм начинает производить защитные тела против конкретной инфекции, вырабатывая приобретенный иммунитет.

Вирусы способны извлекать часть генетической информации хозяина и внедрять их в другую жертву, осуществляя перенос генетической информации. Они поставляют генетический материал, осуществляя горизонтальный перенос генов и вызывая мутации. Это приводит к изменчивости и формированию новых признаков, что важно для эволюционного процесса.

Избежать контакта с вирусными частицами сложно, так как они встречаются повсюду. Но некоторые меры профилактики помогают избежать развития вирусной инфекции:

  • использование марлевых повязок при контактах с больными людьми или при их значительном скоплении;
  • своевременная вакцинация;
  • мытье рук;
  • промывание плодов овощей и фруктов;
  • обработка места нахождения инфицированного больного.

Вирусы действуют по-разному, поэтому и меры профилактики могут отличаться. Так, чтобы не заразиться ВИЧ нужно отказаться от наркотиков, следить за стерильностью инструментов при проколах кожи (контакт с кровью), иметь одного полового партнера или использовать средства индивидуальной защиты.

Прионы

Инфекционные агенты имеют форму нити или кристалла и образованы белковыми молекулами с третичной структурой. Они проникают в организм с продуктами питания и «переделывают» здоровые белки хозяина на свои.

Деформированные белки приводят к сбоям обменных процессов, нарушениям метаболизма, нормальной работы нервной системы.

Например, они являются виновниками неизлечимых заболеваний: «коровьего бешенства», болезни Крейтцфельдта-Якоба, куру и других.

Благодаря созданной системе построения классификации живых организмов есть возможность наблюдать, как происходила эволюция на планете и постепенно происходило усложнение организации.

Биосфера создана из живых существ, которые получили наследственный материал от предков и приспособились к жизни в определенных экологических нишах.

Не все еще открыты и до конца изучены, но благодаря систематике просматривается стройная картина живого мира. 

Смотри также:

Источник: https://bingoschool.ru/manual/311/

Советы доктора
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: